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Preface

Section 5 is written in collaboration with Ya Yan Lu of the Department of
Mathematics, City University of Hong Kong.

1. Introduction

Complexity theory of numerical analysis is the study of the number of arith-
metic operations required to pass from the input to the output of a numerical
problem.

To a large extent this requires the (global) analysis of the basic algorithms
of numerical analysis. This analysis is complicated by the existence of ill-
posed problems, conditioning and round-off error.

A complementary aspect ('lower bounds') is the examination of efficiency
for all algorithms solving a given problem. This study is difficult and needs
a formal definition of algorithm.
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Highly developed complexity theory of computer science provides some
inspiration to the subject at hand. Yet the nature of theoretical computer
science, with its foundations in discrete Turing machines, prevents a simple
transfer to a subject where real number algorithms such as Newton's method
dominate.

One can indeed be sceptical about a formal development of complexity
into the domain of numerical analysis, where problems are solved only to a
certain precision and round-off error is central.

Recall that, according to computer science, an algorithm defined by a
Turing machine is polynomial time if the computing time (measured by the
number of Turing machine operations) T(y) on input y satisfies:

T(y) < K(Size(y))c. (1.1)

Here, size(y) is the number of bits of y. A problem is said to be in P (or
tractable) if there is a polynomial time algorithm (i.e. machine) solving it.

The most natural replacement for a Turing machine operation in a nu-
merical analysis context is an arithmetical operation, since that is the basic
measure of cost in numerical analysis. Thus, one can say with little objec-
tion that the problem of solving a linear system Ax = b is tractable because
the number of required Gaussian pivots is bounded by en and the input size
of the matrix A and vector b is about n2. (There remain some crucial ques-
tions of conditioning to be discussed later.) In this way complexity theory
is part of the tradition of numerical analysis.

But this situation is no doubt exceptional in numerical analysis in that one
obtains an exact answer, and most algorithms in numerical analysis solve
problems only approximately with, say, accuracy e > 0, or precision logs"1.
Moreover, the time required depends more typically on the condition of the
problem. Therefore it is reasonable for 'polynomial time' to be recast in the
form:

T(y, e)<K {^(y) + size(y) - log e^j \ (1.2)

Here, y = (yi,••• ,yn)> with J/J G R is the input of a numerical problem,
with size(y) = n. The accuracy required is e > 0 and /i(y) is a number
representing the condition of the particular problem represented by y (n(y)
could be a condition number). There are situations where one might replace
/i by log// or loge"1 by log logs"1, for example. Moreover, using the notion
of approximate zero, described below, the e might be eliminated.

I see much of the complexity theory ('upper bound' aspect) of numerical
analysis conveniently represented by a two-part scheme. Part 1 is the es-
timate (1.2). Part 2 is an estimate of the probability distribution of /x, and
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takes the form

prob < y-Ky)>K\< [ — ), (1.3)

where a probability measure has been put on the space of inputs.
Then Parts 1 and 2 combine, eliminating the /i, to give a probability

bound of the complexity of the algorithm. The following sections illustrate
this theme. One needs to understand the condition number /i with great
clarity for the procedure to succeed.

I hope this gives some immediate motivation for a complexity theory of
numerical analysis and even to indicate that, all along, numerical analysts
have often been thinking in complexity terms.

Now, complexity theory of computer science has also studied extensively
the problem of finding lower bounds for certain basic problems. For this
one needs a formal definition of algorithm, and the Turing machine begins
to play a serious role. That makes little sense when the real numbers of
numerical analysis dominate the mathematics. However without too much
fuss we can extend the concept of a machine to deal with real numbers,
and one can also start dealing with lower bounds of real number algorithms.
This last is not so traditional for numerical analysis, yet the real number
machine leads to exciting new perspectives and problems.

In computer science, consideration of polynomial time bounds led to
the fundamentally important and notoriously difficult problem 'P = NP?'.
There is a corresponding problem for real number machines, namely 'P =
NP over R?'.

The above is a highly simplified, idealized snapshot of a complexity theory
of numerical analysis. Some details follow in the sections below. Also see
Blum, Cucker, Shub and Smale (1996), referred to hereafter as the Mani-
festo, and its references for more background, history and examples.

2. Fundamental theorem of algebra

The fundamental theorem of algebra (FTA) deserves special attention. Its
study in the past has been a decisive factor in the discovery of algebraic num-
bers, complex numbers, group theory and more recently in the development
of the foundations of algorithms.

Gauss gave four proofs of this result. The first was in his thesis which, in
spite of a gap (see Ostrowski in Gauss), anticipates some modern algorithms
(see Smale 1981). Constructive proofs of the FTA were given in 1924 by
Brouwer and Weyl.

Further, Peter Henrici and his co-workers have given a substantial de-
velopment for analysing algorithms and a complexity theory for the FTA.
See Dejon and Henrici (1969) and Henrici (1977). Also, Collins (1975) gave
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a contribution to the complexity of FTA. See especially Pan (1996) and
McNamee (1993) for historical background and references.

In 1981-82, two articles appeared with approximately the same title,
Schonhage (1982) and Smale (1981), which systematically pursued the issue
of complexity for the FTA. Coincidentally, both authors gave main talks
at the International Congress of Mathematicians, Berkeley 1986, on this
subject; see Schonhage (1987) and Smale (1987a).

These articles fully illustrate two contrasting approaches.
Schonhage's algorithm is in the tradition of Weyl, with a number of ad-

ded features which give very good polynomial time complexity bounds. The
Schonhage analysis includes the worst case and the implicit model is the Tur-
ing machine. On the other hand, the methods have never extended to more
than one variable, and the algorithm is complicated. Some subsequent de-
velopments in a similar spirit include Renegar (19876), Bini and Pan (1987),
Neff (1994), and Neff and Reif (1996). See Pan (1997) for an account of this
approach to the FTA.

In contrast, in Smale (1981), the algorithm is based on continuation meth-
ods such as Kellog, Li, and Yorke (1976), Smale (1976), Keller (1978), and
Hirsch and Smale (1979). See Allgower and Georg (1990, 1993) for a survey.
The complexity analysis of the 1981 paper was a probabilistic polynomial
time bound on the number of arithmetic operations, but much cruder than
Schonhage's. The algorithm, based on Newton's method, was simple, ro-
bust, easy to program, and extended eventually to many variables. The
implicit machine model was that of Blum, Shub and Smale (1989), here-
after referred to as BSS (1989). Subsequent developments along these lines
include Shub and Smale (1985, 1986), Kim (1988), Renegar (19876), Shub
and Smale (1993a, 19936, 1993c, 1996 and 1994), hereafter referred to as
Bez I-V, respectively, and Blum, Cucker, Shub and Smale (1997), hereafter
referred to as BCSS (1997).

Here is a brief account of some of the ideas of Smale (1981). A point z is
called an approximate zero if Newton's method starting at z converges well
in a certain precise sense; see Section 4 below. The main theorem of this
paper asserts the following.

Theorem 2.1 A sufficient number of steps of a modified Newton's method
to obtain an approximate zero of a polynomial / (starting at 0) is polyno-
mially bounded by the degree of the polynomial and 1/cr, where u is the
probability of failure.

For the proof, an invariant // = /i(/) of / is defined akin to a condition
number of / . Then the proof is broken into two parts.

Part 1: A sufficient number of modified Newton steps to obtain an approx-
imate zero of / is polynomially bounded by n{f).
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The proof of Part 1 relies on a Loewner estimate related to the Bieberbach
conjecture.

Part 2: The probability that fi(f) is larger than k is less than k~c, some
constant c.

The proof of Part 2 uses elimination theory of algebraic geometry and
geometric probability theory, Crofton's formula, as in Santalo (1976).

The crude bounds given in Smale (1981), and the mathematics too, were
substantially developed in Shub and Smale (1985, 1986).

Here is a more detailed, more developed, complexity theoretic version of
the FTA in the spirit of numerical analysis. See BCSS (1997) for the details.

Assume given (or input):

a complex polynomial f(z) = ^ aiZ1 in one complex variable,

a complex number ZQ, and an e > 0.

Here is the algorithm to produce a solution (output) z* satisfying

\f(z*)\ <e. (2.1)

Let to = 0, ti = ti-i + At, where At — 1/k, for some positive integer k;
thus £fc = 1, and we have a partition of [0,1]. For any polynomial g, we
define Newton's method by

Ng(z) = z - ^jr\, for all z e C, such that g'(z) ^ 0.
9 \z)

Let ft(z) = f(z) — (1 — t)f(zo). Then, generally, there is a unique path (t
such that ft((t) = 0 all t € [0,1] and Co = zo- Define inductively

Zi = Nfti(zi-i), i = l,...,k, z* = zk. (2.2)

It is easily shown that for almost all (/, ZQ), Z{ will be denned, i = 1 , . . . , k,
provided At is small enough. We may say that k = I/At is the 'complexity'.
It is the main measure of complexity in any case: the problem at hand is,
'how big may we choose At and still have z* satisfying (2.1) and (2.2)?' (i.e.
so that the complexity is the lowest).

Next a 'condition number' fi(f,zo) is denned which measures how close
£t is to being ill-defined. (More precisely fi(f,zo) = cosecfl where 6 is the
supremum of the angles of sectors about f(zo) for which the inverse f~l

mapping f(zo) to ZQ is denned.)

Theorem 2.2 A sufficient number k of Newton steps defined in (2.2) to
achieve (2.1) is given by



528 S. SMALE

Remark 2.1

(a) We are assuming 0 < e < 1/2.
(b) Note that the degree d of / plays no role, and the result holds for any

(f,zo,e).
(c) The proof is based on 'point estimates' (a-theory) (see Section 4 below)

and an estimate of Loewner from Schlicht function theory. Thus it
doesn't quite extend to n variables. It remains a good problem to find
the connection between Theorem 2.2 and Theorem 6.1.

For the next result suppose that / has the form

z=0

Theorem 2.3 The set of points ZQ € C, \ZQ\ = R > 2, such that / /(/ , ZQ) >
b, is contained in the union of 2(d — 1) arcs of total angle

2 / I
- -r + sin

- l

d \b R-\

This result is an estimate on how infrequently poorly conditioned pairs
( / , ZQ) OCCUr.

It is straightforward to combine Theorems 2.2 and 2.3 to eliminate the
\i and obtain both probabilistic and deterministic complexity bounds for
approximating a zero of a polynomial. The probabilistic estimate improves
the deterministic one by a factor of d. Theorem 2.3 and these results are in
Shub and Smale (1985, 1986), but see also BCSS (1997), and Smale (1985).

Remark 2.2 The above-mentioned development might be improved in
sharpness in two ways.

(A) Replace the hypothesis on the polynomial / by assuming as in Renegar
(19876) and Pan (1996) that all the roots of / are in the unit disk.

(B) Suppose that the input polynomial / is described not by its coefficients,
but by a 'program' for / .

3. Condition numbers

The condition number as studied by Wilkinson (1963), important in its own
right in numerical analysis, also plays a key role in complexity theory. We
review it now, especially some recent developments. For linear systems,
Ax = b, the condition number is denned in most basic numerical analysis
texts.

The Eckart and Young (1936) theorem is central, and may be stated as
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where A is a non-singular n x n matrix, with the operator norm on the left
and the Frobenius distance on the right. Moreover, £„ is the subspace of
singular matrices.

The case of 1-variable polynomials was studied by Wilkinson (1963) and
Demmel (1987), among others. Demmel gave estimates on the condition
number and the reciprocal of the distance to the set of polynomials with
multiple roots.

We now give a more general context for condition numbers and give exact
formulae for the condition number as the reciprocal of a distance to the set
of ill-posed problems following Bez I, II, IV, Dedieu (1997a, 19976, 1997c)
and BCSS (1997).

Consider first the context of the implicit function theorem:

F : R f c x R m ^ R m , C1, F(ao,yo) = Q,
dF
-TT" (a>o,yo) : Mm -^ R m non-singular.
By

Then there exists an open neighbourhood U of ao in Rk and a C1 map
G : U -> Km such that G(a0) = yo and F(a, G(a)) = 0, for a <E W.

Regard Fa : Rm —> Rm, Fa(y) = F(a,y), as a system of equations para-
meterized by a € Rk. Then a might be the input of a problem Fa(y) = 0
with output y; G is the 'implicit function'.

Let us call the derivative DG(ao) : Rk —> Mm the condition matrix at
(ao,2/o)- Then the condition number n(ao,yo) = /i, as in Wilkinson (1963),
Rice (1966), Wozniakowski (1977), Demmel (1987), Bez IV, and Dedieu
(1997 a), is denned by

the operator norm. Thus /i(oo,j/o) is the bound on the infinitesimal output
error of the system Fa(y) = 0 in terms of the infinitesimal input error.

It is important to note that, while the map G is given only implicitly, the
condition matrix

nrt \ dF( \-^dF( \
By Ba

is given explicitly, as is its norm, the condition number /x(ao,j/o)-
An example, given by Wilkinson, is the case where Rk is the space of real

polynomials / in one variable of degree < k — 1, and E m = R the space of
C, F(f, Q = /(C)- One may compute that in this case

-o IC I )

For the discussion of several variable polynomial systems, it is convenient
to use complex numbers and homogeneous polynomials.
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If / : C" —> C is a polynomial of degree d, we may introduce a new vari-
able, say zo, and define / : C"+ 1 —»• C by / ( I , zi,...,zn) = f(z\, ...,zn)
and f(Xzo, Xzi,..., Xzn) = Xdf(zo,..., zn). Thus / is a homogeneous poly-
nomial.

If / : C" -> Cn, / = ( / i , . . . , /„) , deg / , = dt, i = 1 , . . . , n, is a polynomial
system, then by letting / equal ( / i , . . . , /«), we obtain a homogeneous sys-
tem / : C n + 1 —> Cn. Any zero of / will also be a zero of / and justification
can be made for the study of such systems in their own right. Thus now we
will consider such systems, say / : C n + 1 —• Cn and denote the space of all
such / by Hd, d = {d\,..., dn), degree fc = di.

Recall that an Hermitian inner product on Cn+1 is defined by
n

(z,w) = Y^ZiWi, z,w£Cn+l.
i=0

Now, define for degree d homogeneous polynomials / , g : Cn+1 —> C,
1

fa9a,

where

f(z) = ^2 faZa, g{z) = ^2 gaz
a-

\a\=d \a\=d

Here a = (ai , . . . , an+i) is a multi-index and

d\ d\ . .
\a\ =I — 1 ',i

a) a i ! - - - a n + i ! ' ^

The weighting by the multinomial coefficient is important, and yields unitary
invariance of the inner product, as below.

Proposition 3.1 (Reznick 1992) Let f,Nx : Cn+1 -> C be degree d
homogeneous polynomials, where Nx(z) = (x,z)d. Then f(x) = (f,Nx).

Corollary 3.1

| < 11/11 IliVxIl < 11/11 \\x\\d.
For f,gEHd, define

It Q\ - V ^ (fi>9i) \\f\\ _ if f\l/2

Dedieu has suggested weighting by 1/d, to make the Condition Number
Theorem below more natural.

The unitary group U(n+ 1) is the group of all linear automorphisms of
Cn+1 which preserve the Hermitian inner product.



COMPLEXITY THEORY AND NUMERICAL ANALYSIS 531

There is an induced action of U(n + 1) on Hd defined by

(af)(z) = f(a-1z), a€U(n + l), z£Cn+1, f£Hd.

Then it can be proved (see, for instance, BCSS 1997) that

This is unitary invariance.
There is a history of this inner product going back at least to Weyl (1932),

with contributions or uses in Kostlan (1993), Brockett (1973), Reznick
(1992), Bez I-V, Degot and Beauzamy (1997), Stein and Weiss (1971),
Dedieu (1997a).

Now we may define the condition number jj,(f, £) for / € Tid, C £ Cn+1,
/(£) = 0 using the previously denned implicit function context. To be
technically correct, one must extend this context to Riemannian manifolds
to deal with the implicitly denned projective spaces. See Bez IV for details.

The following is proved in Bez I (but see also Bez III, Bez IV).

Condition Number Theorem 1 Let / 6 Hd, ( e C"+ 1, f(Q = 0. Then

)

Here the distance d is the projective distance in the space {g €. Tid '•
= 0} t o the subset where £ is a multiple root of g.

The proof uses unitary invariance of all the objects. Thus one can reduce
to the point ( = (1,0, • • •, 0), and then to the linear terms, and then to the
Eckart-Young theorem.

Dedieu (1997a) has generalized this result quite substantially, and has
considered sparse polynomial systems (Dedieu 19976). Thus a formula for
the eigenvalue problem becomes a special case.

4. Newton's method and point estimates

Say that z <E C" is an approximate zero of / : Cn —> C" (or Rn —> Kn, or even
for Banach spaces) if there is an actual zero ( of / (the 'associated zero')
and

N - C I I < Q ) 2 V-CII, (4-1)
where Zi is given by Newton's method

= z-Df(z)-If(z).

Here Df(z) : Cn -> Cn is the (Prechet) derivative of / at z.
An approximate zero z gives an effective termination for an algorithm

provided one can determine whether z has the property (4.1).
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Towards that end, the following invariant is decisive.

fc>2 k\

Here D^f(z) is the kth derivative of / considered as a ^-linear map and
we have taken the operator norm of its composition with Df(z)~l; if the
expression is not defined, then use 7 = 00. See Smale (1986), Smale (1987a)
and Bez I for details of this development.

The invariant 7 turns out to be a key element in the complexity theory of
non-linear systems. Although it is defined in terms of all the higher deriv-
atives, in many contexts it can be estimated in terms of the first derivative,
or even the condition number.

Theorem 4.1 (Smale 1986; see also Traub and Wozniakowski 1979)
Let / :C"^C n ,CeC n with f(() = 0. If

then z is an approximate zero of / with associated zero (.

Now let

a = a(f, z) = /?( / , z)7(f, z), /?( / , z) = \\Df (z)~x f {z)\\.

Theorem 4.2 (Smale 1986) There exists a universal constant ao > 0
such that: if a(f, z) < ao for / : Cn —• Cn, z € Cn, then z is an approximate
zero of / (for some associated actual zero ( of / ) .

Remark 4.1 This is the result that motivates 'point estimates'. One uses
it to conclude that z is an approximate zero / by checking an estimate at
the point z only. Nothing is assumed about / in a region or / at (.

Remark 4.2 For this definition of approximate zero, the best value of ao
is probably no smaller than 1/10. See developments, details and discussions
in Smale (1987a), Wang (1993), Bez I, and BCSS (1997).

Now how might one estimate 7? In Smale (1986, 1987a), there is an
estimate in terms of the first derivative of / , but an estimate in Bez I seems
much more useful. In the context of Section 3, let / € Ha, C € C"+1,
/(C) = 0, and 7o(/, C) = IICIITCA 0- The last is to make 7 projectively
invariant. Recall that D = max(dj), d = (d\,... ,dn), di = deg/j.

Theorem 4.3 (Bez I)

Recall that //(/, Q is the condition number.
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Remark 4.3 One has a similar estimate without assuming f(() = 0.

As a corollary of Theorem 4.3 and a projective version of Theorem 4.1,
one obtains the following.

Theorem 4.4 (Separation of zeros, Malajovich-Munoz 1993, BCSS
1997, Dedieu 19976, 1997d) Let / G Hd, and C, C' be two distinct zeros
of/. Then

D = max(deg/j), / = ( / i , . . . , /„) ,
//(/) = max /j,(f, £) is the condition number of / ,

and d is the distance in projective space.

Remark 4.4 One has also the stronger result

Remark 4.5 The strength of Theorem 4.4 lies in its global aspect. It is
not asymptotic even though fi is denned just by a derivative.

We end this section by stating a global perturbation theorem (Dedieu
(19976)).

Theorem 4.5 Let / , g : Cn -• Cn, ( e Cn with f(Q = 0. Then, if

( ^ |3-3yTf|
<*{g, Q < ^ and

there is a zero £' of g such that

||C-C/||
Here everything is affine including fi(f,(). This uses Theorem 4.2.

5. Linear algebra

Complexity theory is quite implicit in the numerical linear algebra literature.
Indeed, numerical analysts have studied the execution time and memory
requirements for many linear algebra algorithms. This is particularly true for
direct algorithms that solve a problem (such as a linear system of equations)
in a finite number of steps. On the other hand, for more difficult linear
algebra problems (such as the matrix eigenvalue problem) where iterative
methods are needed, the complexity theory is not fully developed. It is our
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belief that a more detailed complexity analysis is desirable and such a study
could help lead to better algorithms in the future.

5.1. Linear systems

Consider the classical problem of a system of linear equations Ax = b,
where A is a n x n non-singular matrix, b is a column vector of length
n. The standard method for solving this problem is Gaussian elimination
(say, with partial pivoting). The number of arithmetic operations required
for this method can be found in most numerical analysis textbooks: it is
2n3/3 + O(n2). Most of these operations come from the LU factorization
of the matrix A, with suitable row exchanges. Namely, PA = LU, where
L is a unit lower triangular matrix (whose entries satisfy \kj\ < 1), U is an
upper triangular matrix, and P is the permutation matrix representing the
row exchanges. When this factorization is completed, the solution of Ax = b
can be found in O(n2) operations. Similar operation counts are also avail-
able for other direct methods for linear systems, for example, the Cholesky
decomposition for symmetric positive definite matrices. Another method
for solving Ax = b, and, more importantly, for least squares problems, is
to use the QR factorization of A. The number of required operations is
4ra3/3 + O(n2). All these direct methods for linear systems involve only a
finite number of steps to find the solution. The complexity of these meth-
ods can be found by counting the total number of arithmetic operations
involved.

A related problem is to investigate the average loss of precision for solving
linear systems. It is well known that the condition number K of the matrix A
bounds the relative errors introduced in the solution by small perturbations
in b and A. Therefore, log K is a measure of the loss of numerical precision.
To find its average, a statistical analysis is needed. The following result for
the expected value of log K is obtained by Edelman.

Theorem 5.1 (Edelman 1988) Let A be a random nxn matrix whose
entries (real and imaginary parts of the entries, for the complex case) are
independent random variables with the standard normal distribution, and
let K = \\A\\ H^l"1!! be its condition number in the 2-norm; then

E(logK,) = logn + c +o(l), for n —> oo,

where c « 1.537 for real random matrices and c « 0.982 for complex random
matrices.

The above result on the average loss of precision is a general result valid for
any method, as a lower bound. If one uses the singular value decomposition
to solve Ax = b, the average loss of precision should be close to E(log K)
above. For a more practical method like Gaussian elimination with partial
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pivoting, the same average could be larger. In fact, Wilkinson's backward
error analysis reveals that the numerical solution x obtained from a finite
precision calculation is the exact solution of a perturbed system (A + E)x =
b. The magnitude of E could be larger than the round-off of A by an extra
growth factor p{A). This gives rise to the extra loss of precision caused
by the particular method used, namely, Gaussian elimination with partial
pivoting. Well-known examples indicate that the growth factor can be as
large as 2n~1. But the following result suggests that large growth factors
only rarely appear exponentially.

Conjecture 5.1 (Trefethen) For any fixed constant p > 0, let A be a
random n x n matrix, whose entries (real and complex parts of the entries
for the complex case, scaled by \/2) are independent samples of the standard
normal distribution. Then, for all sufficiently large n,

Prob (p(A) > na) < n'p,

where a > 1/2.

For iterative methods, we mention that a complexity result is available
for the conjugate gradient method (Hestenes and Stiefel 1952). Let A be a
real symmetric positive definite matrix, XQ be an initial guess for the exact
solution x* of Ax = b, and Xj be the jth. iterate of the conjugate gradient
method. Then the following result is well known (Axelsson (1994), Appendix
B):

where the ^4-norm of a vector v is defined as \\V\\A = (vTAv)1^2. From this,
one easily concludes that if

then \\XJ — X*\\A <

5.2. Eigenvalue problems

In this subsection, we consider a number of basic algorithms for eigenvalue
problems. Complexity results for these methods are more difficult to obtain.

For a matrix A, the power method approximates the eigenvector corres-
ponding to the dominant eigenvalue (largest in absolute value). If there
is one dominant eigenvalue, for almost all initial guesses XQ, the sequence
generated by the power method Xj = A^xo/WA^xoW converges to the dom-
inant eigenvector. A statistical complexity analysis for the power method
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tries to determine the average number of iterations required to produce an
approximation to the exact eigenvector, such that the angle between the
approximate and exact eigenvectors is less than a given small number e (e-
dominant eigenvector). These questions have been studied by Kostlan. The
average is first taken for all initial guesses XQ and a fixed matrix A, then
extended to all matrices for some distribution.

Theorem 5.2 (Kostlan 1988) For any real symmetric n x n matrix A
with eigenvalues |Ai| > [A21 > ... > |An|, the number of iterations re(A) re-
quired for the power method to produce an e-dominant eigenvector, averaged
over all initial vectors, satisfies

logcote i[^(n/2)-V(l/2)]+log cote
< Te\A) < . . 1- 1,log |Ai | — log |A2| log |Ai | — log |A2

where I/J(X) =F'(X)/T(X).

When an average is taken for the set of n x n random real symmetric
matrices (the entries are independent random variables with Gaussian dis-
tributions of zero mean, the variance of any diagonal entry is twice the
variance of any off-diagonal entry), the required number of iterations is in-
finite. However, a finite bound can be obtained if a set of 'bad' initial guesses
and 'bad' matrices of normalized measure r] are excluded.

Theorem 5.3 (Kostlan 1988) For the above n x n random real sym-
metric matrix, with the probability 1 — 77, the average required number of
iterations to produce an e-dominant eigenvector satisfies

< : J ; (^(n/2) - V(V2) + 2 log cot e).

Similar results hold for complex Hermitian matrices. Furthermore, a fi-
nite bound on random symmetric positive definite matrices is also available.
Statistical complexity analysis for a different method of dominant eigen-
vector calculation can be found in Kostlan (1991).

In practice, the Rayleigh quotient iteration method is much more efficient.
Starting from an initial guess XQ, a sequence of vectors {XJ} is generated from

]A y
x X

For symmetric matrices, the following global convergence result has been
established.

Theorem 5.4 (Ostrowski 1958, Parlett and Kahan 1969, Batterson
and Smillie 1989) Let A be a symmetric n x n matrix. For almost any
choice of XQ, the Rayleigh quotient iteration sequence {XJ} converges to an
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eigenvector and lim^oo 9j+\/9^ < 1, where 8j is the angle between Xj and
the closest eigenvector.

A statistical complexity analysis for this method is still not available.
In fact, even for a fixed symmetric matrix A, there is no upper bound on
the number of iterations required to produce a small angle, say, 6j < e for
a small constant e. In general, for a given initial vector xo, one can not
predict which eigenvector it converges to (if the sequence does converge).
On the other hand, for nonsymmetric matrices, we have the following result
on non-convergence.

Theorem 5.5 (Batterson and Smillie 1990) For each n > 3, there is
a nonempty open set of matrices, each of which possesses an open set of
initial vectors for which the Rayleigh quotient iteration sequence does not
converge to an invariant subspace.

Practical numerical methods for matrix eigenvalue problems are often
based on reductions to the condensed forms by orthogonal similarity trans-
formations. For an n x n symmetric matrix A, one typically uses Householder
reflections to obtain a symmetric tridiagonal matrix T. The reduction step
is a finite calculation that requires O(n3) arithmetic operations. While many
numerical methods are available for calculating the eigenvalues and eigen-
vectors of symmetric tridiagonal matrices, we see the lack of a complexity
analysis for these methods.

The QR method with Wilkinson's shift always converges; see Wilkinson
(1968). In this method, the tridiagonal matrix T is replaced by si + RQ
(still symmetric tridiagonal), where s is the eigenvalue of the last 2 x 2 block
of T that is closer to the (n, n) entry of T, and QR = T — si is the QR
factorization of T — si. Wilkinson proved that the (n, n — 1) entries of this
sequence of T always converge to zero. Hoffman and Parlett (1978) gave
a simpler proof for the global linear convergence. The following is an easy
corollary of their result.

Theorem 5.6 Let T be a real symmetric nxn tridiagonal matrix. For
any e > 0, let m be a positive integer satisfying

m > 61og2 -^ + log2(Tln_1T^ljn_2) + 1.

Then, after m QR iterations with Wilkinson's shift, the last subdiagonal
entry of T satisfies

It would be interesting to develop better complexity results based on the
higher asymptotic convergence rate. Alternative definitions for the last sub-
diagonal entry to be sufficiently small are desirable, because the usual de-
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coupling criterion is based on a comparison with the two adjacent diagonal
entries.

The divide and conquer method suggested by Cuppen (1981) calculates
the eigensystem of an unreduced symmetric tridiagonal matrix based on
the eigensystems of two tridiagonal matrices of half size and a rank-one
updating scheme. The computation of the eigenvalues is reduced to solving
the following nonlinear equation

n 2

where {dj} are the eigenvalues of the two smaller matrices and {CJ} are re-
lated to their eigenvectors. This method is complicated by the possibilities
that the elements in {dj} may be not distinct and the set {CJ} may con-
tain zeros. Dongarra and Sorensen (1987) developed an iterative method
for solving the nonlinear equation based on simple rational function approx-
imations. See Bini and Pan (1994) for a complexity analysis of a related
algorithm.

A related method for computing just the eigenvalues uses the set {dj}
to separate the eigenvalues and a nonlinear equation solver for the charac-
teristic polynomial. In Du, Jin, Li and Zeng (19976), the quasi-Laguerre
method is used. An asymptotic convergence result has been established in
Du, Jin, Li and Zeng (1997a), but a complexity analysis is still not available.
The method is complicated by the switch to other methods (the bisection
or Newton's method) to obtain good starting points for the quasi-Laguerre
iterations.

For a general real nonsymmetric matrix A, the QR iteration with Fran-
cis's double shift is widely used to triangularize the Hessenberg matrix H
obtained from the reduction by orthogonal similarity transformations from
A. In this case, there are simple examples for which the QR iteration does
not lead to a decoupling. In Batterson and Day (1992), matrices where
the asymptotic rate of decoupling is only linear are identified. For normal
Hessenberg matrices, Batterson discovered the precise conditions for decoup-
ling under the QR iteration. See Batterson (1994) for details. To develop a
statistical complexity analysis for this method is a great challenge.

6. Complexity in many variables

Consider the problem of following a path, implicitly defined, by a computa-
tionally effective algorithm. Let Tid be as in Section 3.

Let F : [0,1] - Hd x Cn+\ F(t) = (ft, &), satisfy ft((t) = 0, 0 < t < 1,
with the derivative Dft{C,t) having maximum rank. For example, (t could
be given by the implicit function theorem from ft and the initial Co with
/o(Co) = O.
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Next, suppose [0,1] is partitioned into k parts by to = 0, ij = t\-\ + At,
At = 1/fc; thus ife = 1.

Define via Newton's method Nft.

Zi = N f t . ( z i - i ) , i = l,...,k, 2 0 = Co- (6.1)

For sufficiently small At, the z, are well defined and are good approximations
of Q. But k = I/At represents the complexity, so the problem is to avoid
taking At much smaller than necessary. What is a sufficient number of
Newton steps?

Theorem 6.1 (The main theorem of Bez I) The biggest integer k in

cLD2i?

is sufficient to yield Zi by (6.1) which is an approximate zero of fti with
associated actual zero Qi: each i = 1 , . . . , k.

In this estimate c is a rather small universal constant, L is the length of
the curve ft in the projective space, P{7id), 0 < t < 1, D is the max of the
di, i = 1, . . . , n and fj, = maxo<*<i n(ft, (t), where /x(/i, Ct) is the condition
number as denned in Section 3.

Newton's method and approximate zero have been adapted to projective
space. Thus Nf for / e Hd at z € Cn + 1 is the ordinary Newton method
applied to the restriction of / to

z + {yeCn+l:(y,z) = 0}.
As a consequence of the Condition Number Theorem and Theorem 6.1,

the complexity depends mainly on how close the path (ft,(t) comes to the
set of ill-conditioned problems. An improved proof of Theorem 6.1 may be
found in BCSS (1997).

For earlier work on complexity theory for Newton's method in several
variables, see Renegar (1987a). Malajovich (1994) has implemented the
algorithm and developed some of the ideas of Bez I.

The main theorem of the final paper of the series Bez I-Bez V is as follows.

Theorem 6.2 The average number of arithmetic operations sufficient to
find an approximate zero of a system / : Cn —> Cn of polynomials is poly-
nomially bounded in the input size (the number of coefficients of / ) .

On one hand, this result is surprising, because it gives a polynomial time
bound for a problem that is almost intractable. On the other hand, the
'algorithm' is not uniform: it depends on the degrees of the (fi) and even
the desired probability of success. Moreover, the algorithm isn't known! It
is only proved to exist. Thus Theorem 6.2 cries out for understanding and
development. In fact, Mike Shub and I were unable to find a sufficiently
good exposition to include in BCSS (1997).
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Since deciding if there is a solution to / : Cn —> Cn is unMkely to be
accomplished in polynomial time, even using exact arithmetic (see Section
8), an astute analysis of Theorem 6.2 can give insight into the basic problem
'What are the limits of computation?' For example, is it 'on the average'
that gives the possibility of polynomial time?

A real (rather than complex) analogue of Theorem 6.2 also remains to be
found.

Let us give some mathematical detail about the statement of Theorem
6.2. An 'approximate zero' has been denned in Section 4, as, of course,
exact zeros cannot be found (Abel, Galois, et al.). Averaging is performed
relative to a measure induced by the unitarily invariant inner product on
homogenized polynomials of degree d = (d\,... ,dn), where d% = deg/j,
/ = ( / i , . . . , fn) (see Section 3). If N — N(d) is the number of coefficients
of such a system / , then unless n < 4 or some d{ = 1, the number of
arithmetic operations is bounded by cN4. If n < 4 or some di = 1, then we
get cN5.

An important special case is that of quadratic systems, when di = 2
and so N < n3. Then the average arithmetic complexity is bounded by a
polynomial function of n.

'On the average' in the main result is needed because certain polynomial
systems, even affine ones of the type / : C2 —> C2, have one-dimensional sets
of zeros, extremely sensitive to any (practical) real number algorithm; one
would say such / are ill posed.

The algorithm (non-uniform) of the theorem is similar to those of Section
2. It is a continuation method where each step is given by Newton's method
(the step size At is no longer a constant). The continuation starts from a
given 'known' pair g : C n + 1 —> Cn and ( G Cn + 1 , g(() = 0. It is conjectured
in Bez V that one could take for g, the system denned by gi(z) = z§~x z\,
i = 1 , . . . , n and £ = (1, 0 , . . . , 0). A proof of this conjecture would yield a
uniform algorithm.

Finally, we remark that in Bez V, Theorem 6.2 is generalized to the prob-
lem of finding £ zeros, when £ is any number between one and the Bezout
number Yi?=i di and the number of arithmetic operations is augmented by
the factor £2.

The proof of Theorem 6.2 uses Theorem 6.1 and the geometric probability
methods of the next section.

7. Probabilistic estimates

As described in the Introduction, our complexity perspective has two parts,
and the second deals with probability estimates of the condition number.
We have already seen some aspects of this in Sections 2 and 5. Here are
some further results.
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Section 3 describes a condition number for studying zeros of polynomial
systems of equations. We have dealt especially with the homogeneous setting
and defined projective condition number /x(/, Q for / € Hd, d = (d\,..., dn),
degree ft = dh and C <E C"+1 with / ( ( ) = 0. Then

The unitarily invariant inner product (Section 3) on Hd induces a probab-
ility measure on Hd (or equivalently on the projective space P(Hd))- With
this measure the following is proved in Bez II.

Theorem 7.1

Probability lf£Hd : //(/) > - j < Cde
A

-2)X>, N = dimHd, T> =

In the background of this and a number of related results is a geometric
picture (from geometric probability theory), briefly described as follows. It
is convenient to use the projective spaces P(Hd), P(Cn+1) and their product
for the environment of this analysis. Define V to be the subset of ordered
pairs (system, solution):

P{Hd) x P(Cn+1) : /(C) = 0}.

Let 7ri : V -> P(Hd), TT2 : V -> P(Cn + 1) be the restrictions of the corres-
ponding projections, as shown below.

V C P(Hd) x P(Cn + 1)

P{Hd) P{Cn+1)

Theorem 7.2 (Bez II) Let U be an open set in V", then

/ #Uil{x)nU) = f I detfDG(a)DG(a)*\
JxeP{Hd)

 v ' JzeP{cn+l) J(a,z)en~1(z)nu v '

Here DG(a) is the condition matrix, DG(a)* its adjoint and # means car-
dinality.

This result and the underlying theory is valid in great generality (see Bez
II, IV, V, BCSS (1997)).
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There is one aspect of these results and arguments that is quite unsettling
and pervades Bez II-V: the implicit existence theory is not very constructive.

Consider the simplest case (Bez III). For the moment, let d > 1 be an
integer and Tid the space of homogeneous polynomials in two variables of
degree d. It follows from the above geometric probability arguments that
there is a subset Sd of P(7id) of probability measure larger than one-half
such that, for / G Sd, M ( / ) < d.

Problem 7.1 (Bez III) Construct a family {fd e Hd : d = 2,3,. . .} so
that

M/d) < d, o r e v e n

for c any constant.

By 'construct', we mean to provide a polynomial time algorithm (e.g.
in the sense of the machine of Section 8) which, given input d, outputs fd
satisfying the above condition. (This amounts to constructing elliptic Fekete
polynomials.) See also Rakhmanov, Saff and Zhou (1994, 1995).

Another example of an application of the above setting of geometric prob-
ability is the following result. For d = (d\,..., dn), let Ti® denote the space of
real homogeneous systems ( / i , . . •, fn) in n + 1 variables with degree ft = d{.
One can average just as before and obtain the following.

Theorem 7.3 (Bez II) The average number of real zeros of a real homo-
geneous polynomial system is exactly the square root of the Bezout number
T> = nr=i di (D being the number of complex solutions).

See Kostlan (1993) for earlier special cases. See also Edelman and Kostlan
(1995).

For the complexity results of Bez IV, V, Theorem 7.1 is inadequate. There
one has similar theorems where the maximum of the condition number along
an interval is estimated.

8. Real machines

Up to now, our discussion might be called the complexity analysis of al-
gorithms, or upper bounds for the time required to solve problems. To
complement this theory one needs lower bound estimates for problem solv-
ing.

For this endeavour, one must consider all possible algorithms that solve a
given problem. In turn this needs a formal definition and the development
of algorithms and machines. The traditional Turing machine is ill-suited
for this purpose, as is argued in the Manifesto. A 'real number machine'
is the most natural vehicle to deal with problem-solving schemes based on
Newton's method, for example.
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There is a recent development of such a machine in BSS (1989) and BCSS
(1997), which we will review very briefly.

Each input is a string y of real numbers of the form

•• • OOOyi•• • yn000 • ••;

the size S(y) of y is n. These inputs may be restricted to code an instance
of a problem. An 'input node' transforms an input into a state string.

No

y

y - f(y)

2/1 > 0 ?

Yes

2/

Input node

Computation node

Branch node

Output node

Fig. 1. Example of a real number machine

The computation node replaces the state string by a shifted one, right
or left shifted, or does an arithmetic operation on the first elements of the
string. The branch nodes and output nodes are self-explanatory.

The definition of a real machine (or a 'machine over M') is suggested by the
example and consists of an input node and a finite number of computation,
branch, and output nodes organized into a directed graph. It is the flow
chart of a computer program seen as a mathematical object. One might
say that this real number machine is a 'real Turing machine' or an idealized
Fortran program.

The halting set of a real machine is the set of all inputs such that, acting
on the nodal instructions, we eventually land on an output node. An input-
output map (f> is defined on the halting set by 'following the flow' of the flow
chart. For precise definitions and developments see BSS (1989) and BCSS
(1997).
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A machine has polynomial time complexity (sometimes with a restricted
class of inputs) if it enjoys the property

T(y) < S(y)c, for all inputs y, (8.1)

where c is independent of y. In this estimate, T(y) is the time to the
output for the input y measured by the number of nodes encountered in the
computation of <f>(y). Recall that the size S(y) of y is the length of the input
string y.

If the size of the inputs is bounded, and there are no loops, i.e., the
machine is a tree of nodes, then one has a tame machine, or an algebraic
computation tree. These objects have been used to obtain lower bounds
for real number problems. One such development is that of Steele and
Yau (1982) and Ben-Or (1983), based on a real algebraic geometry estimate
of Oleinik and Petrovski (1949), Oleinik (1951), Milnor (1964) and Thorn
(1965). Another is that of Smale (19876) and Vassiliev (1992), and based
on the cohomology of the braid group.

Lower bounds tend to be modest and difficult to obtain, but are necessary
for the understanding of the fundamental problem: 'What are the limits of
computation?'

Note that the definition of a real machine is valid with strings of numbers
lying in any field if one replaces the branch node with the question, ly\ = 0?'
If this field is the field of two elements, one has a Turing machine, and the
size becomes the number of bits. If one uses complex numbers, then one has
a 'complex machine'.

Side remarks 8.1 The study of zeros of polynomial systems plays a cent-
ral role in both mathematics and computation theory. Deciding whether
a set of polynomial equations has a zero over K is even universal in a
formal sense in the theory of real computation. This problem is called
'NP-complete over K' and hence its solution in polynomial time is equival-
ent to 'P = NP over M.' For machines over C, this problem is that of the
Hilbert Nullstellensatz, and Brownawell's (1987) work was critical in get-
ting the fastest-known algorithm (but not polynomial time!) The relation
to NP-complete over C and 'P = NP over C is as in the real case. The same
applies to the field Z2 of two elements and 'P = NP over Z2?' is the same
as the classical Cook-Karp problem 'P = NP?' of computer science. See
BCSS (1997).

My own belief is that this problem is one of the three great unsolved prob-
lems of mathematics (together with the Riemann hypothesis and Poincare's
conjecture in three dimensions).

The rest of Section 8 is more tentative, as we present suggestions in the
direction of a 'second generation' real machine.

For an input y of a problem, an extended notion of size still denoted by
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S(y) could be convenient. The extended notion would be the maximum of
the length of the string (i.e. the previously defined size) and other ingredi-
ents, as follows:

(i) the condition number n(y), or its log, or similar invariants of y
(ii) the precision loge"1, where e is the required accuracy (or perhaps,

depending on the problem, e, or even log log e"1) of the output
(iii) for integer machines, the number of bits.

It is convenient to consider the traditional size of the input as part of
the input (BSS 1989, BCSS 1997). Should the same hold for the extended
size? We won't try to give a definitive answer here. Part of this answer is a
question of convenience, part interpretation. Should the algorithm assume
that the condition number is known explicitly? Probably not, at least very
generally. On the other hand, if one has a good theoretical result on the
distribution, one can make some guess about the condition number. This
can to some extent justify taking the condition number of the particular
problem as input. It is analogous, for example, to running a path-following
program inputing an initial step size as a guess.

Let me give an example of an open problem that fits into this framework.
Let d = (di,..., dm) and Vn^ be the space of m-tuples of real polynomials
/ = ( / i , . . . , /m) m n variables with deg/i < di. Put some distance D
o n Vn,d- Say that / is feasible if the system of inequalities fc(x) > 0, all
i = 1,. . . , m has a solution x € Kn. Let the 'condition number' of / be
defined by:

H(f)=( inf D(f,g)\ if / is feasible,
\g not feasible J

( mf D(f,g) ) if / is not feasible.
\g feasible J

Let the extended size S(f) of / e Vn<d be the maximum (perhaps oo) of
dimVn,d and //(/).

Problem 8.1 Is there a polynomial time algorithm deciding the above
feasibility problem using the extended size?

The problem is formalized in terms of the real machines described above,
using exact arithmetic in particular.

We now propose an extension of the earlier notion of real machine to allow
round-off error in the computation.

A round-off machine over E is a real machine, together with a function
of inputs that, at each input, computation and output node, adds a state
vector of magnitude less than some positive constant 6. One has no a priori
knowledge of the added state vector (it's an adversary). This idealization
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has the virtue of simplicity; we hope this compensates for its ignorance of 
important detail. 

A problem will be called robustly solvable if it can be solved for inputs of 
finite extended size by a round-off machine, no matter what the round-off 
error. 

More important is the concept of robustly solvable in polynomial time. In 
addition to the estimate (8.1) with extended size, S(y), one adds a require
ment such as 

m -siyf- m 

One can now sharpen Problem 8.1 to ask for a decision which is robustly 
solvable in polynomial time. 

The above gives some sense of the notion of a robust or numerically stable 
algorithm, perhaps improving on the attempts in Isaacson and Keller (1966), 
Wozniakowski (1977), Smale (1990) and Shub (1993). 

9. Some other directions 

Many aspects of complexity theory in numerical analysis have not been dealt 
with in this brief report. We now refer to some of these omissions. 

A general reference is Renegar, Shub and Smale (1997), which expands 
on the previous topics and those below. 

There is the important, well-developed field of algebraic complexity the
ory, which relates very much to some of our account. I have the greatest 
admiration for this work, but will only mention here Bini and Pan (1994), 
Grigoriev (1987), and Giusti et al. (1997). 

Also well-developed is the area of information-based complexity. In spite 
of its relevance and importance to our review, I will only mention Traub, 
Wasilkowski and Wozniakowski (1988), where one will find a good introduc
tion and survey. 

Another area in which the mathematical foundation and development 
are strong is the science of mathematical programming, or optimization. 
I believe that numerical analysts interested in complexity considerations 
can learn much from what has happened and is happening in that field. I 
especially like the perspective and work of Renegar (1996). 
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